Application examples

- Archeology: Creates detailed copies of buried cultural treasures such as earthenware and stone tools.
- Manufacture: Image input for converting raster to vector, such as aircraft drawings.
- Museums: Creates high-definition digital archives of the collections of art galleries and museums.
- Art: Creation of high-definition replicas of watercolor paintings and oil paintings.
- Construction: Creates images of the texture of construction materials including stone, wood and fabric.

Specifications

Scan size	custom made	
	Sample: W 60 × D 100 × H 20 cm	
	: W 120 × D 200 × H 12 cm	
	: W 180 × D 250 × H 20 cm	
Optical resolution	400 ppi / 600 ppi / 800 ppi / 1200 ppi	
Bit depth	RGB each 10 bit IN / 16 bit OUT	
Tonal reproduction	Equipped with a shading correction function	
Dimensional precision	Error does not exceed ±0.08%	
	Error does not exceed ±0.01%	
	(when the original software is used)	
Repetitive placement	Error does not exceed ±0.01% (800 ppi)	
Image output	Ortho-photographic image	
	24-bit color / 48-bit color: TIFF format	
	Files exceeding 4 GB: original RAW format	
Light source	Bilateral irradiation using high color rendering	
	white LEDs	
	Changeable angle and intensity ratio	
Imaging optics	Telecentric lens	
Sensor	4000 pixels / color line sensor	
Scanning stage	AC servo-motor driven orthogonal triaxial stage	
Software function	Layer scanning / Reduced size image output /	
	Grayscale image output	
Portability	Can be disassembled, transported, and	
	reassembled. (option)	
Note: The specifications will be revised based on actual installations.		

Patented technology

OrthoScan-IMAGER is the patented technology of iMeasure Inc. and Shin Engineering Consultant Co., Ltd. Patent-protected / Japan: PAT NO. 4758773

Examples of installations

- Shin Engineering Consultant Co. Ltd. (standing / white & infrared / Equipped with rotary table)
- TOPPAN Inc. (gantry / 1.5 m)
- Kyoto National Museum (gantry / white & infrared)
- Ooiri Co. Ltd. (gantry / 2 m / white & infrared)
- Hsuan Cheng Tech., Inc. *Taiwan (gantry)

Developed and manufactured by iMeasure Inc. 2-3-33 Kaichi, Matsumoto, Nagano 390-0876 Japan Tel: +81-(0)263-50-8651 Fax: +81-(0)263-50-8652 www.imeasure.co.jp/en/

Models of OrthoScan-IMAGER

Standing model

The subject is left standing up and scanned from the side.

Gantry model

The subject is placed horizontally and scanned from above.

White and infrared model

Full color (RGB) and infrared (IR) images can be captured with the one scanner

Full color (RGB)

Infrared (IR)

. · iMeasure

Images so realistic that one feels one is looking at the real objects through a magnifying glass. 2 m × 1.2 m turns into a 5-giga pixel image. **Generates high-definition ortho** images from contactless scanning.

OrthoScan-IMAGER features

Use of a telecentric lens

The OrthoScan-IMAGER uses a telecentric lens patented by iMeasure to obtain orthographic images.

• It can capture a large work of art at a high resolution of 1200 ppi.

If the dimensions of the work exceed the capture range of the scanner, it can be scanned section by section. A key feature of orthoimaging is that even such segmented images can be easily joined pixel by pixel. The working distance of the lens is 127-200 mm. Even three-dimensional objects with uneven surfaces can be captured without contact.

Portability

Can be disassembled, assembled, and adjusted by the user. The scanner can be brought to a museum to capture large format paintings.

Outstanding dimension accuracy

Dimension ensure error is less than $\pm 0.08\%$. Dimensional error of less than $\pm 0.01\%$ is achieved with the original software. The dimensions can be measured from the images obtained through contactless scanning. There is no need to hold a caliper against the object.

Product introduction

OrthoScan-IMAGER

Difference between images of a kenzan (used to hold flowers in ikebana) taken from directly above.

Telecentric lens features

• What is orthographic projection?

Ortho-photography is a method of projecting images whereby images are obtained by projecting collimated light (parallel rays of light) from infinity. The projected image obtained through a telecentric lens in called an or thoimage.

Three objects: A, B and C, are lined up to be photographed from above. Figure 1 is a perspective view of how they are photographed. Figure 2 is a cross-sectional view of photographing points P1 and P2 of a camera featuring a normal optical system, and surfaces of objects A, B and C.

Figure 2-1 shows an image obtained using a normal optical lens with the camera placed at point P1. Figure 2-2 shows an image obtained with the camera placed at point P2. As seen in both Figures 2-1 and 2-2, subject B appears distorted into an oblong shape at the end opposite to the optical center of the lens. To be more precise, the right side of subject B in Figure 2-1 appears elongated. In a similar manner, in Figure 2-2 the left side of subject B appears elongated. Therefore, it would be impossible to create a single image by superposing subject B from Figures 2-1 and 2-2 without noticeable distortion.

Then, Figure 3 shows a schematic cross-sectional diagram of the taking of an ortho-photographic image. As before, an image is taken of subjects A and B from photographing point P1. The resultant image is shown in Figure 3-1. Similarly, an image is taken of subjects B and C and the result is shown in Figure 3-2. As both images are taken from directly above, subject B is the same shape in both Figures 3-1 and 3-2. Therefore, it is possible to superpose subject B from Figure 3-1 and Figure 3-2 to create a single image without distortion.

Application examples: survey map of buried cultural properties

• Normal - vs - ortho-photographic images The OrthoScan-IMAGER produces high-resolution digital images without distortion or perspective. Therefore, it is possible to create an accurate life-size side view by simply tracing such an image.

A normal optical lens

A telecentric lens

Notice how both the measuring scale placed in front of the platen and the dimensions of the object being scanned are in focus.